UOJ Logo Universal Online Judge

UOJ

#4487. [Jsoi2015]染色问题

统计

Description

棋盘是一个n×m的矩形,分成n行m列共n*m个小方格。
现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定:
1.棋盘的每一个小方格既可以染色(染成C种颜色中的一种),也可以不染色。
2.棋盘的每一行至少有一个小方格被染色。
3.棋盘的每一列至少有一个小方格被染色。
4.种颜色都在棋盘上出现至少一次。
以下是一些将3×3棋盘染成C=3种颜色(红、黄、蓝)的例子:

请你求出满足要求的不同的染色方案总数。只要存在一个位置的颜色不同,
即认为两个染色方案是不同的

Input

输入只有一行 3 个整数n,m,c。1 < = n,m,c < = 400

Output

输出一个整数,为不同染色方案总数。
因为总数可能很大,只需输出总数mod 1,000,000,007的值。

Sample Input

2 2 3

Sample Output

60

Hint

Source